Menu
Home
About
Our Role
Goals
The Team
Roadmap
Tokenomics
How To Buy
Knowledge Base
Contacts
Sitemap & Links
A.I.
Chart
Shop
IMMORTALITY
🏠
⬇️
SearX Robot
Afrikaans
Shqip
አማርኛ
العربية
Հայերեն
Azərbaycan dili
Euskara
Беларуская мова
বাংলা
Bosanski
Български
Català
Cebuano
Chichewa
简体中文
繁體中文
Corsu
Hrvatski
Čeština
Dansk
Nederlands
English
Esperanto
Eesti
Filipino
Suomi
Français
Frysk
Galego
ქართული
Deutsch
Ελληνικά
ગુજરાતી
Kreyol ayisyen
Harshen Hausa
Ōlelo Hawaiʻi
עִבְרִית
हिन्दी
Hmong
Magyar
Íslenska
Igbo
Bahasa Indonesia
Gaeilge
Italiano
日本語
Basa Jawa
ಕನ್ನಡ
Қазақ тілі
ភាសាខ្មែរ
한국어
كوردی
Кыргызча
ພາສາລາວ
Latin
Latviešu valoda
Lietuvių kalba
Lëtzebuergesch
Македонски јазик
Malagasy
Bahasa Melayu
മലയാളം
Maltese
Te Reo Māori
मराठी
Монгол
ဗမာစာ
नेपाली
Norsk bokmål
پښتو
فارسی
Polski
Português
ਪੰਜਾਬੀ
Română
Русский
Samoan
Gàidhlig
Српски језик
Sesotho
Shona
سنڌي
සිංහල
Slovenčina
Slovenščina
Afsoomaali
Español
Basa Sunda
Kiswahili
Svenska
Тоҷикӣ
தமிழ்
తెలుగు
ไทย
Türkçe
Українська
اردو
O‘zbekcha
Tiếng Việt
Cymraeg
isiXhosa
יידיש
Yorùbá
Zulu
en
New name
B
I
U
S
link
image
code
HTML
list
Show page
Syntax
Command: {pre} wget -qO- "http://localhost/searxng/search?q=test&category_general=&language=auto&time_range=&safesearch=0&theme=simple" {/pre} {pre} curl "http://localhost/searxng/search?q=test&category_general=&language=auto&time_range=&safesearch=0&theme=simple" {/pre} Build the cache from the keyword dataset {pre} import json import subprocess # Path to dataset JSON file json_file_path = 'path_to_your_json_file.json' # Read the JSON file with open(json_file_path, 'r') as file: data = json.load(file) # Iterate through the JSON data to extract keywords for item in data: keyword = item['keyphrase'] # Construct the wget command wget_command = f'wget -qO- "http://localhost/searxng/search?q={keyword}&category_general=&language=auto&time_range=&safesearch=0&theme=simple"' # Execute the wget command subprocess.run(wget_command, shell=True) # Add a 1 second delay time.sleep ( 1 ) {/pre} '''Keyword Datasets''' # https://www.kaggle.com/datasets/hofesiy/2019-search-engine-keywords Running this list produces new keyword suggestions right from searx, extract suggestions... {pre} # Scan the cache and grab all the keywords import json from pathlib import Path def process_searxng_cache(cache_dir, output_file): # Create a set to store unique processed entries entries = set() # Walk through all directories and files in the cache directory cache_path = Path(cache_dir) # Debug: Check if the cache directory exists if not cache_path.exists(): print(f"Cache directory {cache_path} does not exist.") return # Debug: Print the cache directory path print(f"Cache directory: {cache_path}") for subdir in cache_path.iterdir(): if subdir.is_dir(): print(f"Processing subdirectory: {subdir}") # Debug: Print each subdirectory being processed for file in subdir.iterdir(): if file.is_file(): # Attempt to open and read each file as JSON print(f"Found file: {file}") # Debug: Print each file being processed try: with file.open('r', encoding='utf-8') as f: data = json.load(f) # Print the JSON data to debug print(f"Processing file: {file}") print(f"JSON data: {data}") # Check if the required keys are in the JSON data if 'query' in data and 'suggestions' in data: query = data['query'] suggestions = data['suggestions'] print(f"Query: {query}, Suggestions: {suggestions}") # Debug output for suggestion in suggestions: entries.add(f"{query}: {suggestion}") else: print(f"Missing 'query' or 'suggestions' in file {file}") except (json.JSONDecodeError, KeyError, IOError) as e: print(f"Error processing file {file}: {e}") # Write the entries to the output file with Path(output_file).open('w', encoding='utf-8') as out_f: for entry in sorted(entries): out_f.write(f"{entry}\n") if __name__ == "__main__": cache_dir = "/usr/local/searxng/searxng-src/searx/cache/" output_file = "keywords.txt" process_searxng_cache(cache_dir, output_file) print(f"Processed entries have been saved to {output_file}") {/pre} Use the suggestions to crawl more {pre} import subprocess # Path to your text file text_file_path = 'path_to_your_text_file.txt' # Read the text file with open(text_file_path, 'r') as file: lines = file.readlines() # Iterate through the lines to extract keywords for line in lines: keyword = line.strip() # Remove any leading/trailing whitespace # Construct the wget command wget_command = f'wget -qO- "http://localhost/searxng/search?q={keyword}&category_general=&language=auto&time_range=&safesearch=0&theme=simple"' # Execute the wget command subprocess.run(wget_command, shell=True) # Add a 1 second delay time.sleep ( 1 ) {/pre}
Password
Summary of changes
📜
⏱️
⬆️