LumenScopeAI BrainTransformers
This revision is from 2024/10/18 01:31. You can Restore it.
- git clone https://github.com/LumenScopeAI/BrainTransformers-SNN-LLM.git
- https://huggingface.co/LumenscopeAI/BrainTransformers-3B-Chat
Custom transfomer that comes with git clone: BrainTransformers-SNN-LLM/transformers/models/braingpt/configuration_braingpt.py
Add:
from transformers import PretrainedConfig
git clone https://github.com/LumenScopeAI/BrainTransformers-SNN-LLM.git
cd BrainTransformers-SNN-LLM/
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/LumenscopeAI/BrainTransformers-3B-Chat
Open run.py and change the model path to BrainTransformers-3B-Chat
BrainTransformers-SNN-LLM/transformers/models/braingpt/modeling_braingpt.py
def load_silu_approximator(device, dtype):
act_fn = SiLUApproximator().to(device).to(dtype)
pos_checkpoint = os.path.join(os.path.dirname(__file__), 'model_pos.pth')
neg_checkpoint = os.path.join(os.path.dirname(__file__), 'model_neg.pth')
if os.path.exists(pos_checkpoint) and os.path.exists(neg_checkpoint):
act_fn.pos_model.load_state_dict(
torch.load(pos_checkpoint, map_location=device, weights_only=True)
)
act_fn.neg_model.load_state_dict(
torch.load(neg_checkpoint, map_location=device, weights_only=True)
)
"""
act_fn.pos_model.load_state_dict(
torch.load(pos_checkpoint, map_location=device)
)
act_fn.neg_model.load_state_dict(
torch.load(neg_checkpoint, map_location=device)
)
"""
else:
raise FileNotFoundError(
f"SiLUApproximator parameters not found at {pos_checkpoint} and {neg_checkpoint}"
)
return act_fn