Attention is all you need

import torch

import torch.nn as nn

import torch.nn.functional as F

class MultiHeadAttention(nn.Module):

def __init__(self, d_model, n_heads):

super(MultiHeadAttention, self).__init__()

assert d_model % n_heads == 0, "d_model must be divisible by n_heads"

self.d_model = d_model

self.n_heads = n_heads

self.d_k = d_model // n_heads

self.W_q = nn.Linear(d_model, d_model)

self.W_k = nn.Linear(d_model, d_model)

self.W_v = nn.Linear(d_model, d_model)

self.W_o = nn.Linear(d_model, d_model)

def forward(self, Q, K, V, mask=None):

batch_size = Q.size(0)

Q = self.W_q(Q).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2)

K = self.W_k(K).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2)

V = self.W_v(V).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2)

scores = torch.matmul(Q, K.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.d_k, dtype=torch.float32))

if mask is not None:

scores = scores.masked_fill(mask == 0, -1e9)

attention = F.softmax(scores, dim=-1)

output = torch.matmul(attention, V)

output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)

output = self.W_o(output)

return output, attention

class PositionwiseFeedForward(nn.Module):

def __init__(self, d_model, d_ff):

super(PositionwiseFeedForward, self).__init__()

self.linear1 = nn.Linear(d_model, d_ff)

self.linear2 = nn.Linear(d_ff, d_model)

def forward(self, x):

return self.linear2(F.relu(self.linear1(x)))

class PositionalEncoding(nn.Module):

def __init__(self, d_model, max_len=5000):

super(PositionalEncoding, self).__init__()

pe = torch.zeros(max_len, d_model)

position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)

div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-torch.log(torch.tensor(10000.0)) / d_model))

pe[:, 0::2] = torch.sin(position * div_term)

pe[:, 1::2] = torch.cos(position * div_term)

pe = pe.unsqueeze(0).transpose(0, 1)

self.register_buffer('pe', pe)

def forward(self, x):

x = x + self.pe[:x.size(0), :]

return x

class EncoderLayer(nn.Module):

def __init__(self, d_model, n_heads, d_ff, dropout=0.1):

super(EncoderLayer, self).__init__()

self.self_attn = MultiHeadAttention(d_model, n_heads)

self.feed_forward = PositionwiseFeedForward(d_model, d_ff)

self.norm1 = nn.LayerNorm(d_model)

self.norm2 = nn.LayerNorm(d_model)

self.dropout1 = nn.Dropout(dropout)

self.dropout2 = nn.Dropout(dropout)

def forward(self, x, mask=None):

attn_output, _ = self.self_attn(x, x, x, mask)

x = self.norm1(x + self.dropout1(attn_output))

ff_output = self.feed_forward(x)

x = self.norm2(x + self.dropout2(ff_output))

return x

class DecoderLayer(nn.Module):

def __init__(self, d_model, n_heads, d_ff, dropout=0.1):

super(DecoderLayer, self).__init__()

self.self_attn = MultiHeadAttention(d_model, n_heads)

self.src_attn = MultiHeadAttention(d_model, n_heads)

self.feed_forward = PositionwiseFeedForward(d_model, d_ff)

self.norm1 = nn.LayerNorm(d_model)

self.norm2 = nn.LayerNorm(d_model)

self.norm3 = nn.LayerNorm(d_model)

self.dropout1 = nn.Dropout(dropout)

self.dropout2 = nn.Dropout(dropout)

self.dropout3 = nn.Dropout(dropout)

def forward(self, x, memory, src_mask=None, tgt_mask=None):

attn1, _ = self.self_attn(x, x, x, tgt_mask)

x = self.norm1(x + self.dropout1(attn1))

attn2, _ = self.src_attn(x, memory, memory, src_mask)

x = self.norm2(x + self.dropout2(attn2))

ff_output = self.feed_forward(x)

x = self.norm3(x + self.dropout3(ff_output))

return x

class Transformer(nn.Module):

def __init__(self, src_vocab_size, tgt_vocab_size, d_model, n_heads, d_ff, n_layers, dropout=0.1):

super(Transformer, self).__init__()

self.encoder = nn.ModuleList([EncoderLayer(d_model, n_heads, d_ff, dropout) for _ in range(n_layers)])

self.decoder = nn.ModuleList([DecoderLayer(d_model, n_heads, d_ff, dropout) for _ in range(n_layers)])

self.src_embed = nn.Sequential(nn.Embedding(src_vocab_size, d_model), PositionalEncoding(d_model))

self.tgt_embed = nn.Sequential(nn.Embedding(tgt_vocab_size, d_model), PositionalEncoding(d_model))

self.out = nn.Linear(d_model, tgt_vocab_size)

def forward(self, src, tgt, src_mask=None, tgt_mask=None):

enc_output = self.src_embed(src)

for layer in self.encoder:

enc_output = layer(enc_output, src_mask)

dec_output = self.tgt_embed(tgt)

for layer in self.decoder:

dec_output = layer(dec_output, enc_output, src_mask, tgt_mask)

output = self.out(dec_output)

return output

# Example usage

src_vocab_size = 1000

tgt_vocab_size = 1000

d_model = 512

n_heads = 8

d_ff = 2048

n_layers = 6

dropout = 0.1

model = Transformer(src_vocab_size, tgt_vocab_size, d_model, n_heads, d_ff, n_layers, dropout)

Another version... uses the popular Squad Q&A data set in a directory named ./datasets, train-v2.0.json and dev-v2.0.json

More verbatim version to the model described in Attention is all you need paper

{pre}

import torch

import torch.nn as nn

import torch.nn.functional as F

class MultiHeadAttention(nn.Module):

def __init__(self, d_model, n_heads):

super(MultiHeadAttention, self).__init__()

assert d_model % n_heads == 0, "d_model must be divisible by n_heads"

self.d_model = d_model

self.n_heads = n_heads

self.d_k = d_model // n_heads

self.W_q = nn.Linear(d_model, d_model)

self.W_k = nn.Linear(d_model, d_model)

self.W_v = nn.Linear(d_model, d_model)

self.W_o = nn.Linear(d_model, d_model)

def forward(self, Q, K, V, mask=None):

batch_size = Q.size(0)

Q = self.W_q(Q).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2)

K = self.W_k(K).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2)

V = self.W_v(V).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2)

scores = torch.matmul(Q, K.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.d_k, dtype=torch.float32))

if mask is not None:

scores = scores.masked_fill(mask == 0, -1e9)

attention = F.softmax(scores, dim=-1)

output = torch.matmul(attention, V)

output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)

output = self.W_o(output)

return output, attention

class PositionwiseFeedForward(nn.Module):

def __init__(self, d_model, d_ff):

super(PositionwiseFeedForward, self).__init__()

self.linear1 = nn.Linear(d_model, d_ff)

self.linear2 = nn.Linear(d_ff, d_model)

def forward(self, x):

return self.linear2(F.relu(self.linear1(x)))

class PositionalEncoding(nn.Module):

def __init__(self, d_model, max_len=5000):

super(PositionalEncoding, self).__init__()

pe = torch.zeros(max_len, d_model)

position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)

div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-torch.log(torch.tensor(10000.0)) / d_model))

pe[:, 0::2] = torch.sin(position * div_term)

pe[:, 1::2] = torch.cos(position * div_term)

pe = pe.unsqueeze(0).transpose(0, 1)

self.register_buffer('pe', pe)

def forward(self, x):

x = x + self.pe[:x.size(0), :]

return x

class EncoderLayer(nn.Module):

def __init__(self, d_model, n_heads, d_ff, dropout=0.1):

super(EncoderLayer, self).__init__()

self.self_attn = MultiHeadAttention(d_model, n_heads)

self.feed_forward = PositionwiseFeedForward(d_model, d_ff)

self.norm1 = nn.LayerNorm(d_model)

self.norm2 = nn.LayerNorm(d_model)

self.dropout1 = nn.Dropout(dropout)

self.dropout2 = nn.Dropout(dropout)

def forward(self, x, mask=None):

attn_output, _ = self.self_attn(x, x, x, mask)

x = self.norm1(x + self.dropout1(attn_output))

ff_output = self.feed_forward(x)

x = self.norm2(x + self.dropout2(ff_output))

return x

class DecoderLayer(nn.Module):

def __init__(self, d_model, n_heads, d_ff, dropout=0.1):

super(DecoderLayer, self).__init__()

self.self_attn = MultiHeadAttention(d_model, n_heads)

self.src_attn = MultiHeadAttention(d_model, n_heads)

self.feed_forward = PositionwiseFeedForward(d_model, d_ff)

self.norm1 = nn.LayerNorm(d_model)

self.norm2 = nn.LayerNorm(d_model)

self.norm3 = nn.LayerNorm(d_model)

self.dropout1 = nn.Dropout(dropout)

self.dropout2 = nn.Dropout(dropout)

self.dropout3 = nn.Dropout(dropout)

def forward(self, x, memory, src_mask=None, tgt_mask=None):

attn1, _ = self.self_attn(x, x, x, tgt_mask)

x = self.norm1(x + self.dropout1(attn1))

attn2, _ = self.src_attn(x, memory, memory, src_mask)

x = self.norm2(x + self.dropout2(attn2))

ff_output = self.feed_forward(x)

x = self.norm3(x + self.dropout3(ff_output))

return x

class Transformer(nn.Module):

def __init__(self, src_vocab_size, tgt_vocab_size, d_model, n_heads, d_ff, n_layers, dropout=0.1):

super(Transformer, self).__init__()

self.encoder = nn.ModuleList([EncoderLayer(d_model, n_heads, d_ff, dropout) for _ in range(n_layers)])

self.decoder = nn.ModuleList([DecoderLayer(d_model, n_heads, d_ff, dropout) for _ in range(n_layers)])

self.src_embed = nn.Sequential(nn.Embedding(src_vocab_size, d_model), PositionalEncoding(d_model))

self.tgt_embed = nn.Sequential(nn.Embedding(tgt_vocab_size, d_model), PositionalEncoding(d_model))

self.out = nn.Linear(d_model, tgt_vocab_size)

def forward(self, src, tgt, src_mask=None, tgt_mask=None):

enc_output = self.src_embed(src)

for layer in self.encoder:

enc_output = layer(enc_output, src_mask)

dec_output = self.tgt_embed(tgt)

for layer in self.decoder:

dec_output = layer(dec_output, enc_output, src_mask, tgt_mask)

output = self.out(dec_output)

return output

# Example usage

src_vocab_size = 1000

tgt_vocab_size = 1000

d_model = 512

n_heads = 8

d_ff = 2048

n_layers = 6

dropout = 0.1

model = Transformer(src_vocab_size, tgt_vocab_size, d_model, n_heads, d_ff, n_layers, dropout)

Another version, very verbatim implementation... uses the popular Squad Q&A data set in a directory named ./datasets, train-v2.0.json and dev-v2.0.json

import os

import json

import math

import torch

import torch.nn as nn

import torch.optim as optim

from torch.utils.data import DataLoader, Dataset

from transformers import BertTokenizer, squad_convert_examples_to_features, SquadV2Processor

from tqdm import tqdm

def scaled_dot_product_attention(q, k, v, mask=None):

matmul_qk = torch.matmul(q, k.transpose(-2, -1))

d_k = q.size(-1)

scaled_attention_logits = matmul_qk / torch.sqrt(torch.tensor(d_k, dtype=torch.float32))

if mask is not None:

scaled_attention_logits = scaled_attention_logits.masked_fill(mask == 0, float('-inf'))

attention_weights = torch.softmax(scaled_attention_logits, dim=-1)

output = torch.matmul(attention_weights, v)

return output, attention_weights

class MultiHeadAttention(nn.Module):

def __init__(self, d_model, n_heads):

super(MultiHeadAttention, self).__init__()

assert d_model % n_heads == 0, "d_model must be divisible by n_heads"

self.d_model = d_model

self.n_heads = n_heads

self.d_k = d_model // n_heads

self.W_q = nn.Linear(d_model, d_model)

self.W_k = nn.Linear(d_model, d_model)

self.W_v = nn.Linear(d_model, d_model)

self.W_o = nn.Linear(d_model, d_model)

def forward(self, Q, K, V, mask=None):

batch_size = Q.size(0)

Q = self.W_q(Q).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2)

K = self.W_k(K).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2)

V = self.W_v(V).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2)

output, _ = scaled_dot_product_attention(Q, K, V, mask)

output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)

output = self.W_o(output)

return output

class PositionwiseFeedForward(nn.Module):

def __init__(self, d_model, d_ff):

super(PositionwiseFeedForward, self).__init__()

self.linear1 = nn.Linear(d_model, d_ff)

self.linear2 = nn.Linear(d_ff, d_model)

def forward(self, x):

return self.linear2(torch.relu(self.linear1(x)))

class EncoderLayer(nn.Module):

def __init__(self, d_model, n_heads, d_ff, dropout=0.1):

super(EncoderLayer, self).__init__()

self.self_attn = MultiHeadAttention(d_model, n_heads)

self.feed_forward = PositionwiseFeedForward(d_model, d_ff)

self.norm1 = nn.LayerNorm(d_model)

self.norm2 = nn.LayerNorm(d_model)

self.dropout1 = nn.Dropout(dropout)

self.dropout2 = nn.Dropout(dropout)

def forward(self, x, mask=None):

attn_output = self.self_attn(x, x, x, mask)

x = self.norm1(x + self.dropout1(attn_output))

ff_output = self.feed_forward(x)

x = self.norm2(x + self.dropout2(ff_output))

return x

class DecoderLayer(nn.Module):

def __init__(self, d_model, n_heads, d_ff, dropout=0.1):

super(DecoderLayer, self).__init__()

self.self_attn = MultiHeadAttention(d_model, n_heads)

self.cross_attn = MultiHeadAttention(d_model, n_heads)

self.feed_forward = PositionwiseFeedForward(d_model, d_ff)

self.norm1 = nn.LayerNorm(d_model)

self.norm2 = nn.LayerNorm(d_model)

self.norm3 = nn.LayerNorm(d_model)

self.dropout1 = nn.Dropout(dropout)

self.dropout2 = nn.Dropout(dropout)

self.dropout3 = nn.Dropout(dropout)

def forward(self, x, enc_output, src_mask=None, tgt_mask=None):

attn_output = self.self_attn(x, x, x, tgt_mask)

x = self.norm1(x + self.dropout1(attn_output))

attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)

x = self.norm2(x + self.dropout2(attn_output))

ff_output = self.feed_forward(x)

x = self.norm3(x + self.dropout3(ff_output))

return x

class Transformer(nn.Module):

def __init__(self, vocab_size, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout=0.1):

super(Transformer, self).__init__()

self.embedding = nn.Embedding(vocab_size, d_model)

self.pos_encoder = self.generate_positional_encoding(d_model, 512) # Max sequence length of 512

self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, nhead, dim_feedforward, dropout) for _ in range(num_encoder_layers)])

self.decoder_layers = nn.ModuleList([DecoderLayer(d_model, nhead, dim_feedforward, dropout) for _ in range(num_decoder_layers)])

self.linear_start = nn.Linear(d_model, 1)

self.linear_end = nn.Linear(d_model, 1)

def generate_positional_encoding(self, d_model, max_len):

pe = torch.zeros(max_len, d_model)

position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)

div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-torch.log(torch.tensor(10000.0)) / d_model))

pe[:, 0::2] = torch.sin(position * div_term)

pe[:, 1::2] = torch.cos(position * div_term)

pe = pe.unsqueeze(0).transpose(0, 1)

return pe

def forward(self, input_ids, attention_mask):

seq_length = input_ids.size(1)

pos = torch.arange(0, seq_length, dtype=torch.long, device=input_ids.device).unsqueeze(0).expand_as(input_ids)

enc_output = self.embedding(input_ids) + self.pos_encoder[:seq_length, :].squeeze(1).to(input_ids.device)

# Create encoder self-attention mask

src_mask = attention_mask.unsqueeze(1).unsqueeze(2)

for layer in self.encoder_layers:

enc_output = layer(enc_output, src_mask)

# Use the same input for decoder (this is a simplification, you might want to modify this for your specific use case)

dec_output = enc_output

# Create decoder self-attention mask (causal mask)

tgt_mask = self.generate_square_subsequent_mask(seq_length).to(input_ids.device)

for layer in self.decoder_layers:

dec_output = layer(dec_output, enc_output, src_mask, tgt_mask)

start_logits = self.linear_start(dec_output).squeeze(-1)

end_logits = self.linear_end(dec_output).squeeze(-1)

return start_logits, end_logits

def generate_square_subsequent_mask(self, sz):

mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)

mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))

return mask

class SquadDataset(Dataset):

def __init__(self, features):

self.features = features

def __len__(self):

return len(self.features)

def __getitem__(self, idx):

feature = self.features[idx]

return {

'input_ids': torch.tensor(feature.input_ids, dtype=torch.long),

'attention_mask': torch.tensor(feature.attention_mask, dtype=torch.long),

'token_type_ids': torch.tensor(feature.token_type_ids, dtype=torch.long),

'start_positions': torch.tensor(feature.start_position, dtype=torch.long),

'end_positions': torch.tensor(feature.end_position, dtype=torch.long),

}

def train_epoch(model, dataloader, optimizer, scheduler, device):

model.train()

total_loss = 0

for batch in tqdm(dataloader, desc="Training"):

input_ids, attention_mask, token_type_ids, start_positions, end_positions = [b.to(device) for b in batch]

optimizer.zero_grad()

start_logits, end_logits = model(input_ids, attention_mask)

loss_fct = nn.CrossEntropyLoss()

start_loss = loss_fct(start_logits, start_positions)

end_loss = loss_fct(end_logits, end_positions)

loss = (start_loss + end_loss) / 2

loss.backward()

optimizer.step()

scheduler.step()

total_loss += loss.item()

return total_loss / len(dataloader)

def evaluate(model, dataloader, device):

model.eval()

total_loss = 0

with torch.no_grad():

for batch in tqdm(dataloader, desc="Evaluating"):

input_ids, attention_mask, token_type_ids, start_positions, end_positions = [b.to(device) for b in batch]

decoder_input_ids = input_ids[:, :-1]

src_mask = attention_mask.unsqueeze(1).unsqueeze(2)

tgt_mask = attention_mask.unsqueeze(1).unsqueeze(2)[:, :, :-1, :-1]

start_logits, end_logits = model(input_ids, decoder_input_ids, src_mask, tgt_mask)

loss_fct = nn.CrossEntropyLoss()

start_loss = loss_fct(start_logits, start_positions)

end_loss = loss_fct(end_logits, end_positions)

loss = (start_loss + end_loss) / 2

total_loss += loss.item()

return total_loss / len(dataloader)

def get_cosine_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_cycles=0.5):

def lr_lambda(current_step):

if current_step < num_warmup_steps:

return float(current_step) / float(max(1, num_warmup_steps))

progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))

return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))

return torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)

def custom_collate(batch):

input_ids = torch.stack([item['input_ids'] for item in batch])

attention_mask = torch.stack([item['attention_mask'] for item in batch])

token_type_ids = torch.stack([item['token_type_ids'] for item in batch])

start_positions = torch.stack([item['start_positions'] for item in batch])

end_positions = torch.stack([item['end_positions'] for item in batch])

return input_ids, attention_mask, token_type_ids, start_positions, end_positions

def main():

squad_data_dir = 'datasets'

train_file = 'train-v2.0.json'

dev_file = 'dev-v2.0.json'

processor = SquadV2Processor()

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# Load and process training examples

train_examples = processor.get_train_examples(squad_data_dir, filename=train_file)

train_features = squad_convert_examples_to_features(

examples=train_examples,

tokenizer=tokenizer,

max_seq_length=384,

doc_stride=128,

max_query_length=64,

is_training=True,

return_dataset=False, # Changed back to False to get the list of features

)

train_dataset = SquadDataset(train_features)

train_dataloader = DataLoader(train_dataset, batch_size=8, shuffle=True, collate_fn=custom_collate)

# Load and process validation examples

val_examples = processor.get_dev_examples(squad_data_dir, filename=dev_file)

val_features = squad_convert_examples_to_features(

examples=val_examples,

tokenizer=tokenizer,

max_seq_length=384,

doc_stride=128,

max_query_length=64,

is_training=False,

return_dataset=False, # Changed back to False to get the list of features

)

val_dataset = SquadDataset(val_features)

val_dataloader = DataLoader(val_dataset, batch_size=8, shuffle=False, collate_fn=custom_collate)

model = Transformer(vocab_size=30522, d_model=768, nhead=12, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model.to(device)

optimizer = optim.Adam(model.parameters(), lr=5e-5, betas=(0.9, 0.98), eps=1e-9)

scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=4000, num_training_steps=100000)

for epoch in range(3):

print(f"Epoch {epoch + 1}")

train_loss = train_epoch(model, train_dataloader, optimizer, scheduler, device)

print(f"Train Loss: {train_loss}")

val_loss = evaluate(model, val_dataloader, device)

print(f"Validation Loss: {val_loss}")

# Save the model

torch.save(model.state_dict(), 'transformer_squad.pt')

if __name__ == "__main__":

main()

  

📝 📜 ⏱️ ⬆️