LumenScopeAI BrainTransformers
- git clone https://github.com/LumenScopeAI/BrainTransformers-SNN-LLM.git
- https://huggingface.co/LumenscopeAI/BrainTransformers-3B-Chat
Custom transfomer that comes with git clone: BrainTransformers-SNN-LLM/transformers/models/braingpt/configuration_braingpt.py
Add:
from transformers import PretrainedConfig
git clone https://github.com/LumenScopeAI/BrainTransformers-SNN-LLM.git
cd BrainTransformers-SNN-LLM/
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/LumenscopeAI/BrainTransformers-3B-Chat
BrainTransformers-SNN-LLM/transformers/models/braingpt/modeling_braingpt.py
def load_silu_approximator(device, dtype):
act_fn = SiLUApproximator().to(device).to(dtype)
pos_checkpoint = os.path.join(os.path.dirname(__file__), 'model_pos.pth')
neg_checkpoint = os.path.join(os.path.dirname(__file__), 'model_neg.pth')
if os.path.exists(pos_checkpoint) and os.path.exists(neg_checkpoint):
act_fn.pos_model.load_state_dict(
torch.load(pos_checkpoint, map_location=device, weights_only=True)
)
act_fn.neg_model.load_state_dict(
torch.load(neg_checkpoint, map_location=device, weights_only=True)
)
"""
act_fn.pos_model.load_state_dict(
torch.load(pos_checkpoint, map_location=device)
)
act_fn.neg_model.load_state_dict(
torch.load(neg_checkpoint, map_location=device)
)
"""
else:
raise FileNotFoundError(
f"SiLUApproximator parameters not found at {pos_checkpoint} and {neg_checkpoint}"
)
return act_fn
Open run.py and change the model path to BrainTransformers-3B-Chat
import torch
from transformers import AutoTokenizer, BrainGPTForCausalLM
from tqdm import tqdm
from torch.utils.data import DataLoader
# Define the model and tokenizer pathmodel_path = "BrainTransformers-3B-Chat"
# Load the model and tokenizerprint("Loading model and tokenizer...")
model = BrainGPTForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Move the model to GPU (if available)device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print(f"Model loaded on {device}")
# Define a function to generate textdef generate_text(messages, max_new_tokens=200, temperature=0.7, top_k=50, top_p=0.95, do_sample=True):
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = model.generate(
**model_inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
do_sample=do_sample,
pad_token_id=tokenizer.eos_token_id
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
# Test the generation functiondef test_generation(test_prompts):
print("\nTesting text generation:")
for prompt in test_prompts:
messages = [
{"role": "system", "content": "You are a knowledgeable assistant."},
{"role": "user", "content": prompt}
]
print(f"\nPrompt: {prompt}")
generated = generate_text(messages)
print(f"Generated: {generated}")
# Define a function to interact with the modeldef interact_with_model():
while True:
user_input = input("You: ")
if user_input.lower() in ["exit", "quit"]:
break
messages = [
{"role": "system", "content": "You are a knowledgeable assistant."},
{"role": "user", "content": user_input}
]
response = generate_text(messages)
print(f"Assistant: {response}")
test_prompts = [
"Please explain the Pythagorean theorem!",
"What is artificial intelligence?",
"Write a poem about spring.",
"Explain the basic principles of quantum computing.",
"How to make a simple pizza?"
]print("\nTesting text generation before STDP training:")
test_generation(test_prompts)
# Interact with the modelprint("\nYou can now interact with the model. Type 'exit' or 'quit' to stop.")
interact_with_model()